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Abstract. The problem of describing the dynamics of quantum systems generated by a nonlocal-
in-time interaction is considered. It is shown that the use of the Feynman approach to quantum
theory in combination with the canonical approach allows one to extend quantum dynamics to
describe the time evolution in the case of such interactions. In this way, using only the current
concepts of quantum theory, a generalized equation of motion for state vectors is derived. In the
case where the fundamental interaction generating the dynamics in a system is local in time, this
equation is equivalent to the Schrödinger equation. Explicit examples are given for an exactly
solvable model. The proposed formalism is shown to provide a new insight into the problem of the
description of nonlocal interactions in quantum field theory. It is shown that such a property of the
equation of motion, such as nonlocality in time, may be important for describing hadron–hadron
interactions at low and intermediate energies.

1. Introduction

Various physical applications of quantum mechanics and quantum field theory require solutions
of evolution problems. In standard canonical quantum theory, it is postulated that quantum
dynamics is governed by the Schrödinger equation. However, as is well known, in quantum
electrodynamics (QED) the ultraviolet divergences can be removed from theS matrix, but
cannot be removed from quantities characterizing the time evolution of quantum systems,
since regularization of the scattering matrix leads to a situation in which divergent terms
automatically appear in the Schrödinger equation [1]. For this reason this equation is only of
formal importance to quantum field theory. This leads, in particular, to difficulties in finding a
consistent QED description of natural broadening of spectral line profiles in an atomic system
[2]. Since locality has been argued to be the main cause of infinities in quantum field theory, it
seems natural to resolve this problem by introducing a nonlocal form factor into the interaction
Hamiltonian density. However, as is well known, such an introduction of a nonlocal form factor
results in a loss of covariance. The reason for this is quite obvious. The Schrödinger equation
is local in time, and the interaction Hamiltonian describes an instantaneous interaction. In
nonrelativistic quantum mechanics processes of instantaneous interaction may be nonlocal
in space. But in relativistic quantum theory a local-in-time process must also be local in
space. Thus, for the introduction of nonlocality in the theory to be intrinsically consistent,
one has to find a way of solving the evolution problem in the case when the dynamics in a
system is generated by a nonlocal-in-time interaction. The solution of this problem may also
be important for describing the low-energy hadron–hadron interaction. Indeed, nonlocality of
interaction leads to the energy dependence of effective interaction operators. In recent years the
possibility of using energy-dependent potentials to describe hadron–hadron interaction at low
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and intermediate energies has been widely discussed [3–10]. Interest in studying potentials
of this type is provoked by the still existing discrepancy between theory and experiment.
For example, most ‘realistic’ nucleon–nucleon (NN) potentials are not sufficiently strong to
reproduce the observed3H and 3He binding energies (see, for example, [11]). Moreover,
the energy dependence of the effective operators of hadron–hadron interaction is associated
with the quark degrees of freedom, which are not included explicitly in the description of low-
energy hadron interaction, and is predicted, for example, by quark models [3, 10]. However, the
dynamics of such systems cannot be described in the framework of the Hamiltonian formalism.
Indeed, the energy dependence of the interaction Hamiltonian means that the total Hamiltonian
also depends on energy, i.e. on its spectral parameter. Such an ‘operator’ is not an operator in
a rigorous sense. Hence the energy-dependent interaction operator cannot be interpreted as an
interaction Hamiltonian.

Now let us turn to the Feynman formulation of quantum theory [12, 13]. The main idea of
this formulation is that quantum dynamics can be described without resorting to the Schrödinger
equation. Feynman’s theory starts with an analysis of the phenomenon of quantum interference
which leads directly to the concept of the superposition of probability amplitudes. According
to this concept, the probability amplitude of an event which can occur in several different ways
is a sum of probability amplitudes for each of these ways [12]. The Feynman formulation
also contains, as its essential idea, the concept of a probability amplitude associated with a
completely specified motion or path in space-time, and it is postulated that this probability
amplitude has a phase proportional to the action, computed classically, for the corresponding
path. Using this postulate together with the above assumption concerning the calculation of
probabilities in quantum mechanics leads to Feynman’s sum-over-paths formalism.

The theory of Feynman differs profoundly in its formulation from canonical quantum
theory. These dissimilar approaches were proved to be equivalent and to complement one
another in solving various problems in quantum physics. In this paper we show that these
two approaches can be used in combination for describing the time evolution of quantum
systems. In this way an equation of motion for state vectors is derived. Being equivalent to the
Schr̈odinger equation in the case of local interaction, this equation makes it possible to solve
the evolution problem in the case where the interaction generating the dynamics in a quantum
system is nonlocal in time.

We start with the evolution equation|ψ(t)〉 = U(t, t0)|ψ(t0)〉, where|ψ(t)〉 is a state
vector andU(t, t0) is the evolution operator. Then, using the basic assumption of the
Feynman formulation, we represent the matrix elements of the evolution operator as a sum of
contributions from all alternative ways of realization of the corresponding evolution process.
The history of a quantum system is represented by some version of the time evolution of the
system associated with completely specified instants of the beginning and end of the interaction
in the system. In this way we obtain an expression for the matrix elements of the operator
U(t, t0) in terms of probability amplitudes associated with such versions. An equation for
these amplitudes is then derived from the requirement of unitarity for the evolution operator.
It is shown that this equation can be regarded as an equation of motion. The concept of
a generalized interaction operator is introduced. This operator is a generalization of the
interaction Hamiltonian and generates the dynamics of a quantum system. In particular,
the generalized interaction operator can be chosen so that the dynamics generated by this
operator proves equivalent to the dynamics governed by the Schrödinger equation. At the
same time, the equation of motion derived in this paper permits the generalization to the case
where this equation manifests itself as a nonlocal-in-time dynamical equation. This point
is illustrated in detail on an exactly solvable model. Finally, we discuss applications of the
proposed formalism. This formalism is shown to provide a new insight into the problem of
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the description of nonlocal interactions in quantum field theory. It is also shown that such
a property of the proposed dynamical equation, as nonlocality in time may be important for
describing hadron–hadron interactions at low and intermediate energies.

2. Basic assumptions of quantum theory

We assume the following properties for the states of quantum systems.

(i) The physical state of a system is represented by a vector (properly by a ray) of a Hilbert
space.

(ii) An observableA is represented by a Hermitian hypermaximal operatorα. The eigenvalues
ar ofα give the possible values ofA. An eigenvector|ϕ(s)r 〉 corresponding to the eigenvalue
ar represents a state in whichA has the valuear . If the system is in the state|ψ〉, the
probabilityPr of finding the valuear for A, when a measurement is performed, is given
by

Pr = 〈ψ |PVr |ψ〉 =
∑
s

|〈ϕ(s)r |ψ〉|2

wherePVr is the projection operator on the eigenmanifoldVr corresponding toar , and the
sum6s is taken over a complete orthonormal set|ϕ(s)r 〉 (s = 1, 2, . . .) of Vr . The state of
the system immediately after the observation is described by the vectorPVr |ψ〉.
These assumptions are the main assumptions on which quantum theory is founded. In

the canonical formalism these postulates are used together with the assumption that the time
evolution of a state vector is governed by the Schrödinger equation. In our study we do not
use this assumption. Instead, the following postulate is used.

(iii) The probability of an event is the absolute square of a complex number called the
probability amplitude. The joint probability amplitude of a time-ordered sequence of
events is the product of the separate probability amplitudes of each of these events. The
probability amplitude of an event which can happen in several different ways is a sum of
the probability amplitudes for each of these ways.

The statements of the assumption (iii) express the well known law for the quantum
mechanical probabilities. Within the canonical formalism this law is derived as one of the
consequences of the theory. However, in the Feynman formulation of quantum theory this law
is directly derived starting from the analysis of the phenomenon of quantum interference, and
is used as a basic postulate of the theory. We also use the following assumption.

(iv) Under space-time translationsx → x+a, the eigenstates|n〉 of a system of non-interacting
particles corresponding to the total momentum of the particlesP = ∑

i pi (pi is the
momentum of theith particle) transforms as follows:

|n〉 →
x→x+a

exp(−iPna)|n〉

whereEn =
∑

i

√
p2
i +m2

i (mi are the masses of the particles),Pna ≡ Pµn aµ, anda is
an arbitrary four-vector of displacement, andn stands for the entire set of discrete and
continuous variables that characterize the system in full.

Here and below, we use units where ¯h = 1. The statement of the assumption (iv) expresses
the well known law of transformation of vectors describing states of non-interacting particles
under space-time translations. This law is used, for example, as one of the starting points in
constructing the axiomatic approaches to quantum field theory (see, for example, [14, 15]).
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The assumptions (i)–(iv) represent the current concepts of quantum theory. In this paper
we suggest a new way of using these concepts. In this way an equation of motion more general
than the Schr̈odinger equation is derived as a consequence of the assumptions (i)–(iv) and the
requirement of conservation of probabilities.

3. Time-evolution operator

Let H0 be the free Hamiltonian, i.e. the operator of the total energy of a system of
particles travelling freely without interaction or external disturbance. The vectors|n〉 are
the eigenvectors of this operator:H0|n〉 = En|n〉. As is well known, from assumption (ii) it
follows that eigenvectors of any observable form a complete set of basis vectors in the Hilbert
space. However, such continuum state vectors as the eigenvectors|n〉 of the free Hamiltonian
H0 do not belong to the Hilbert space of the states. Following the Dirac formalism we will
assume|n〉 to be generalized basis vectors orthonormalized in a continuum (by using delta
functions) in terms of which any vector of the Hilbert space can be expanded:

|ψ〉 =
∑
n

|n〉〈n|ψ〉. (1)

From this and assumption (iv) it follows that if there is no interaction in the system then any
state vector has the following time dependence:

|ψ(t)〉 = exp(−iH0t)|ψ(0)〉. (2)

Below, we employ the interaction representation in which the state vectors relate to the state
vectors in the Schrödinger representation as follows:|ψ(t)〉I = exp(iH0t)|ψ(t)〉S . From (2)
it follows that in the interaction representation the state vectors of non-interacting particles are
independent of time. Let us consider the probability amplitude〈ψ2|U(t, t0)|ψ1〉 of finding, for
a measurement at timet , the quantum system in the state|ψ2〉 if at time t0 it was in the state
|ψ1〉. As follows from assumption (ii), this probability is the absolute square of the probability
amplitude which is given by the scalar product〈ψ2|ψ(t)〉. Here|ψ(t)〉 = U(t, t0)|ψ1〉 is the
state at timet to which the system evolves from the state|ψ1〉 at timet0 if it is not disturbed
by measurements; accordingly,U(t, t0) is the operator describing such an evolution. In the
canonical approach to quantum theoryU(t, t0) is postulated to be a unitary operator

U+(t2, t1)U(t2, t1) = U(t2, t1)U+(t2, t1) = 1 (3)

with the group property

U(t2, t1)U(t1, t0) = U(t2, t0) U(t0, t0) = 1. (4)

In the case of an isolated system (only systems of this type are considered in this paper),
the evolution operator in the Schrödinger pictureUs(t2, t1) ≡ exp(−iH0t2)U(t2, t1) exp(iH0t1)

depends only on the difference(t2− t1) only, so that the operatorsV (t) ≡ Us(t, 0) constitute
a one-parameter group of unitary operators, with the group property

V (t1 + t2) = V (t1)V (t2) V (0) = 0. (5)

If these operators are assumed to be strongly continuous, i.e. if

lim
t2→t1
‖V (t2)|ψ〉 − V (t1)|ψ〉‖ = 0 (6)

then from Stone’s theorem it follows [16] that this one-parameter group has a self-adjoint
infinitesimal generatorH :

V (t) = exp(−iHt) id/dt V (t) = HV (t).
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IdentifyingH with the total Hamiltonian as usual, we get the time-dependent Schrödinger
equation: id|ψs(t)〉dt = H |ψs(t)〉, where|ψs(t)〉 = V (t)|ψs(t = 0)〉. However, condition (6)
seems to be too strong. From the physical point of view, it is enough to require that

〈ψ2|V (t2)|ψ1〉 →
t2→ t1
〈ψ2|V (t1)|ψ1〉 (7)

for any physically realizable states|ψ1〉 and |ψ2〉 [14]. Note, in this connection, that there
are normalized vectors in the Hilbert space that represent the states for which the energy of a
system is infinite. Such states cannot be considered as physically realizable [14], and hence
the corresponding matrix elements of the evolution operator need not be continuous. For this
reason, in this paper we do not restrict ourselves to the strongly continuous evolution operators.
We only assume that the evolution operator satisfies the condition (7). This means that we do
not use the assumption that the time evolution of a state vector is governed by the Schrödinger
equation as the basic dynamical postulate.

According to assumption (iii), the probability amplitude of an event which can happen in
several different ways is a sum of contributions from each alternative way. In particular, the
amplitude〈ψ2|U(t, t0)|ψ1〉 can be represented as a sum of contributions from all alternative
ways of realization of the corresponding evolution process. Dividing these alternatives in
different classes, we can then analyse such a probability amplitude in different ways [13]. For
example, subprocesses with definite instants of the beginning and end of the interaction in the
system can be considered as such alternatives. Let〈n2|U(t, t0; t2, t1)|n1〉 be the probability
amplitude that if at timet0 the system was in the state|n1〉, then the interaction in the system
will begin at timet1 and end at timet2, and at timet the system will be in the state|n2〉.
According to postulate (iii), the amplitudes〈n2|U(t, t0; t2, t1)|n1〉 determine the contributions
from the above alternatives, and〈n2|U(t, t0)|n1〉 can be represented as a sum (more precisely
as an integral) of these contributions

〈n2|U(t, t0)|n1〉 = ϕ(n2, n1, t, t0) +
∫ t

t0

dt2

∫ t2

t0

dt1 〈n2|U(t, t0; t2, t1)|n1〉 (8)

whereϕ(n2, n1, t, t0) is the probability amplitude that if at timet0 the system was in the state
|n1〉, then the particles of the system will not interact in the time interval(t0, t), and at time
t the system will be in the state|n2〉. Thus, the first term on the right-hand side of (8) is the
contribution from the alternative subprocess in the case of which the particles of the system do
not interact. From postulate (iii), it follows that the probability amplitude〈n2|U(t, t0; t2, t1)|n1〉
is expressible as a product

〈n2|U(t, t0; t2, t1)|n1〉 =
∑
n′

∑
n

ϕ(n2, n
′, t, t2)〈n′|S̃(t2, t1)|n〉ϕ(n, n1, t1, t0) (9)

where〈n2|S̃(t2, t1)|n1〉 is the probability amplitude that if at timet1 the system was in the state
|n1〉, then the interaction in the system will begin at timet1 and will end at timet2, and at this
time the system will be in the state|n2〉.

The evolution operatorU(t, t0) has a natural decomposition

U(t, t0) = 1 + iR(t, t0). (10)

Here the unit operator represents the no-interaction part; its matrix elements are delta functions
which make the final momenta the same as the initial momenta. The operatorR(t, t0) represents
the interaction part. From (8) and (10) it follows thatϕ(n2, n1, t2, t1) = 〈n2|n1〉, and hence
〈n2|U(t, t0; t2, t1)|n1〉 = 〈n2|S̃(t2, t1)|n1〉. Thus, equation (8) can be rewritten in the form

〈n2|U(t, t0)|n1〉 = 〈n2|n1〉 +
∫ t

t0

dt2

∫ t2

t0

dt1 〈n2|S̃(t2, t1)|n1〉 (11)
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accordingly, the evolution operatorU(t, t0) can be expressed in terms of the operatorsS̃(t2, t1)

whose matrix elements are the amplitudes〈n2|S̃(t2, t1)|n1〉:
U(t, t0) = 1 +

∫ t

t0

dt2

∫ t2

t0

dt1 S̃(t2, t1). (12)

Equation (12) defines the evolution operatorU(t2, t1) only for t2 > t1. Using (3), the evolution
operatorU(t2, t1) for t2 < t1 can be constructed as follows:

U(t2, t1) = U−1(t1, t2) = U+(t1, t2). (13)

It should be noted that in generalS̃(t2, t1) may be an operator-valued distribution, since only
U(t, t0) has to be an operator on the Hilbert space. Nevertheless, throughout this paper we use
the term ‘operator’ for̃S(t2, t1).

To clarify the role which the operator̃S(t2, t1) plays in the proposed formalism, note the
following. The Feynman formulation is based on the assumption that the history of a system
can be represented by some path in space-time. From postulate (iii) it then follows that the
probability amplitudes of any event is a sum of the probability amplitudes that a particle has a
completely specified path in space-time. The contribution from a single path is postulated to
be an exponential whose (imaginary) phase is the classical action (in units of ¯h) for the path in
question. In the proposed formalism the history of a system is represented by the version of
the time evolution of the system associated with completely specified instants of the beginning
and end of the interaction in the system. Such a description of the history of a system is more
general and requires no supplementary postulates like the above assumptions of the Feynman
formulation. On the other hand, the probability amplitudes〈ψ2|S̃(t2, t1)|ψ1〉 in terms of which
we describe quantum dynamics, are used in the spirit of Feynman’s theory: the probability
amplitude of any event is represented as a sum of these amplitudes. Below we show that the
requirement of unitarity for the evolution operator given by (12) leads to an equation for the
operatorS̃(t2, t1) which can be regarded as an equation of motion.

As we have noted,〈ψ(t2)|S̃(t2, t1)|ψ(t1)〉 is the probability amplitude that if at timet1
the system was in the state|ψ1〉, then the interaction in the system will begin at timet1
and end at timet2, and at this time the system will be found in the state|ψ(t2)〉. Here
this probability amplitude is represented by the matrix element〈ψ(t2)|S̃(t2, t1)|ψ(t1)〉 in the
interaction picture. However, the same probability amplitude can be represented by the matrix
element〈ψs(t2)|S̃s(t2, t1)|ψs(t1)〉 in the Schr̈odinger picture, wherẽSs(t2, t1) is the operator
describing the transformation of a state at timet1 into the state at timet2 caused by the
interaction in the system that begins at timet1 and ends at timet2. Being an operator in the
Schr̈odinger picture,̃Ss(t2, t1) depends on the difference(t2− t1) only: S̃s(t2, t1) ≡ T̃ (t2− t1).
Since〈ψs(t2)|S̃(t2, t1)|ψs(t1)〉 and〈ψs(t2)|T̃ (t2 − t1)|ψs(t1)〉 represent the same probability
amplitude, we have

〈ψ(t2)|S̃(t2, t1)|ψs(t1)〉 = 〈ψs(t2)|T̃ (t2 − t1)|ψs(t1)〉. (14)

Taking into account the relation between the states in the Schrödinger and interaction pictures
given by|ψ(t)〉 = exp(iH0t)|ψs(t)〉, from (14), we get

S̃(t2, t1) = exp(iH0t2)T̃ (t2 − t1) exp(−iH0t1)〉. (15)

Let us now consider the scattering matrix. Lettingt0→−∞ andt →∞ in (12), we get
theS matrix in the following form:

〈n2|S|n1〉 = 〈n2|n1〉 +
∫ ∞
−∞

dt2

∫ t2

−∞
dt1〈n2|S̃(t2, t1)|n1〉. (16)

By using (15), this expression can be rewritten in the form

〈n2|S|n1〉 = 〈n2|n1〉 − 2π iδ(En2 − En1)〈n2|T (En1)|n1〉 (17)
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where the operatorT (z) is defined by

〈n2|T (z)|n1〉 = i
∫ ∞
−∞

dτ exp(izτ)〈n2|F(τ)|n1〉 (18)

with

〈n2|F(τ)|n1〉 = 〈n2|T̃ (τ )|n1〉 τ > 0 (19)

and〈n2|F(τ)|n1〉 = 0 for τ < 0. The fact thatF(τ) = 0 for τ < 0 can be considered as an
expression of causality, sinceτ is assumed to be the duration time of interaction that has to be
positive. A remarkable consequence of this fact is that〈n2|T (z)|n1〉 is analytic in the upper
half of the complexz plane.

4. Unitarity condition and its consequences

Let us consider the unitarity condition that expresses the principle of conservation of
probabilities. Substituting (10) into the unitarity condition (3) gives

〈n2|R(t, t0)|n1〉 − 〈n2|R+(t, t0)|n1〉 = i
∑
n

〈n2|R+(t, t0)|n〉〈n|R(t, t0)|n1〉 (20)

〈n2|R(t, t0)|n1〉 − 〈n2|R+(t, t0)|n1〉 = i
∑
n

〈n2|R(t, t0)|n〉〈n|R+(t, t0)|n1〉. (21)

From (10), (12) and (15) it follows that the operatorR(t, t0) can be written as

R(t, t0) = −i
∫ t

t0

dt2

∫ t2

t0

dt1 exp(iH0t2)T̃ (t2 − t1) exp(−iH0t1). (22)

Taking into account that, according to (18), the operatorT̃ (τ ) can be represented in the form

T̃ (τ ) = − i

2π

∫ ∞
−∞

dx exp(−izτ)T (z) (23)

wherez = x + iy, x andy are real, andy > 0, we get

〈n2|R(t, t0)|n1〉 = − 1

2π

∫ t

t0

dt2

∫ t2

t0

dt1

∫ ∞
−∞

dx

× exp(iEn2t2) exp[−iz(t2 − t1)] exp(−iEn1t1)〈n2|T (z)|n1〉. (24)

Let us assume that〈n2|T (z)|n1〉 satisfies the condition

lim
|z|→∞

〈n2|T (z)|n1〉
z

= 0. (25)

Note in this connection that the properties of〈n2|T (z)|n1〉 at infinity depend on the behaviour
of 〈n2|S̃(t2, t1)|n1〉 in the limit t2 → t1. As shown below, in the proposed formalism this
behaviour determines the dynamics in the system. Thus, by assuming that〈n2|T (z)|n1〉
satisfies condition (25), we restrict ourselves to considering some class of the dynamical
schemes. However, the important thing for us is that, as is shown below, the Hamiltonian
dynamics belongs to this class. Taking into account condition (25), from (24), we get (see
appendix A)

〈n2|R(t, t0)|n1〉 = 1

2π

∫ ∞
−∞

dx
exp[−i(z− En2)t ] exp[i(z− En1)t0]

(z− En2)(z− En1)
〈n2|T (z)|n1〉. (26)



5664 R Kh Gainutdinov

Substituting (26) into (20) gives∫ ∞
−∞

dx1
exp[−i(z1− En2)t ] exp[i(z1− En1)t0]

(z1− En2)(z1− En1)
〈n2|T (z1)|n1〉

−
∫ ∞
−∞

dx2
exp[i(z∗2 − En1)t ] exp[−i(z∗2 − En2)t0]

(z∗2 − En2)(z
∗
2 − En1)

〈n2|T +(z2)|n1〉
= 〈n2|M(t, t0)|n1〉 (27)

wherez1 = x1 + iy, z2 = x2 + iy, y > 0, and

〈n2|M(t, t0)|n1〉 = i

2π

∫ ∞
−∞

dx1

∫ ∞
−∞

dx2

×exp[i(z∗2 − z1)(t − t0)] exp[i(En2 − En1)t0]

(z∗2 − En2)(z1− En1)
〈n2|B(z2, z1)|n1〉 (28)

with

〈n2|B(z2, z1)|n1〉 =
∑
n

〈n2|T +(z2)|n〉〈n|T (z1)|n1〉
(z∗2 − En)(z1− En) . (29)

Note that equation (27) derived in this way must be satisfied fort > t0. However, taking into
account the analytic properties of〈n2|T (z)|n1〉, one can easily verify that both sides of (27)
are equal to zero fort < t0. Thus, equation (27) is valid for allt andt0. Represent the operator
B(z1, z2) in the form

B(z1, z2) = T (z1)− T +(z2)

z∗2 − z1
+ F(z1, z2). (30)

Substituting (30) into (27) and taking into account the analytic properties of〈n2|T (z)|n1〉, we
then have∫ ∞
−∞

dx1

∫ ∞
−∞

dx2
exp[i(z∗2 − z1)(t − t0)] exp[i(En2 − En1)t0]

(z∗2 − En2)(z1− En1)
〈n2|F(z1, z2)|n1〉 = 0. (31)

Since equation (31) must be satisfied for allt andt0, we get

〈n2|F(z1, z2)|n1〉 = 0. (32)

From this it follows that

T (z1)− T +(z2) = (z∗2 − z1)
∑
n

T +(z2)|n〉〈n|T (z1)

(z∗2 − En)(z1− En) . (33)

Proceeding in an analogous way, from (21), we obtain

T (z1)− T +(z2) = (z∗2 − z1)
∑
n

T (z1)|n〉〈n|T +(z2)

(z∗2 − En)(z1− En) . (34)

It is easy to show then that the following equation results from (33) and (34):

T (z1)− T (z2) = (z2 − z1)
∑
n

T (z2)|n〉〈n|T (z1)

(z2 − En)(z1− En) . (35)

Thus, we have shown that for the evolution operator given by (12) to be unitary the operatorT (z)

must satisfy equations (33)–(35). At the same time, as it shown in appendix B, the evolution
operator given by (12) satisfies the composition law (4), provided equation (35) is valid. Note
that equation (35) can be derived from the composition law (4) and the representation (12)
in the same way in which (33) has been derived from this representation and the unitarity
condition (20). However, equations (33) and (34) are more general than equation (35). In
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fact, (35) results from (33) and (34). But for (33) and (34) to result from (35) the additional
assumption thatT +(z) = T (z∗) is required.

Equation (35) plays a key role in the proposed formalism. It has been derived as a
consequence of such fundamental physical principles of quantum theory as the requirement of
conservation of probabilities and the principle of the superposition of probability amplitudes.
It should be noted that an equation having the same form as equation (35) has been derived
for the scattering T matrix as a consequence of the above principles within the approach to the
scattering theory developed in [17–20]. That equation was derived as an off-shell generalization
of the unitarity condition for the scatteringS matrix, and may be regarded as a particular case
of equation (35).

5. Equation of motion for state vectors

In the previous section we derived equations (33)–(35) for the operatorT (z). It now becomes
necessary for us to obtain an equation directly for the operatorS̃(t2, t1) which is of central
importance in our formalism. It can be shown (see appendix C) that for equation (35) to be
valid for anyz1 andz2 the operator must satisfy the following equations:

(1− exp[ia(t2 − t1)])S̃(t2, t1)
=
∫ t2

t1

dt4

∫ t4

t1

dt3 exp[ia(t2 − t4)](1− exp[ia(t4 − t3)])S̃(t2, t4)S̃(t3, t1) (36)

(t2 − t1)S̃(t2, t1) =
∫ t2

t1

dt4

∫ t4

t1

dt3(t4 − t3)S̃(t2, t4)S̃(t3, t1) (37)

wherea = z2− z1. Substituting (15) into (37), we then obtain the corresponding equation for
the operator̃T (τ)

τ T̃ (τ ) =
∫ τ

0
dτ2

∫ τ−τ2

0
dτ1(τ − τ1− τ2)T̃ (τ2) exp[−i(τ − τ1− τ2)H0]T̃ (τ1). (38)

It should be noted that (38) coincides, in form, with the equation for the operatorT̃ (τ ) derived
within scattering theory [21]. However, (38) was initially considered as an equation allowing
one to ascertain which boundary conditions for equation (35) are admissible. In [22] it was
shown that this equation enables one to construct a new class models in nonrelativistic quantum
scattering theory, which were shown to open new possibilities for describing hadron–hadron
interactions at low energies.

As we show below, equation (37) allows one to obtain the amplitudes〈n2|S̃(t2, t1)|n1〉 for
any t1 andt2 if the amplitudes〈n2|S̃(t ′2, t ′1)|n1〉 corresponding to infinitesimal duration times
τ = t ′2 − t ′1 of interaction are known. It is natural to assume that most of the contribution
to the evolution operator in the limitt2 → t1 comes from the processes associated with an
fundamental interaction in the system under study. Denoting this contribution byHint (t2, t1),
the operator̃S(t2, t1) can be represented in the form

S̃(t2, t1) = Hint (t2, t1) + S̃1(t2, t1) (39)

whereS̃1(t2, t1) is the part of the operator̃S(t2, t1)which in the limitt2→ t1 gives the negligibly
small contribution to the evolution operator in comparison withHint (t2, t1). We assume that
the operatorHint (t2, t1) contains all the dynamical information that is needed to construct
the evolution operatorU(t2, t1). Thus we assume that the operatorHint (t2, t1) plays the role
which the interaction Hamiltonian plays in the ordinary formulation of quantum theory: it
generates dynamics in a system. This operator can be regarded as a generalization of the
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interaction Hamiltonian, and we call it the generalized interaction operator. Obviously, the
operatorHint (t2, t1) must satisfy (37) in the limitt2→ t1

F1(t2, t1) →
t2→t1

0 (40)

where

F1(t2, t1) = −(t2 − t1)Hint (t2, t1) +
∫ t2

t1

dt4

∫ t4

t1

dt3 (t4 − t3)Hint (t2, t4)Hint (t3, t1).
According to (15), the operatorHint (t2, t1) can be represented in the form

Hint (t2, t1) = exp(iH0t2)H
(s)
int (t2 − t1) exp(−iH0t1) (41)

whereH(s)
int (t2 − t1) is the generalized interaction operator in the Schrödinger picture. If

Hint (t2, t1) is specified, equation (37) allows one to find the operatorS̃(t2, t1). Formula (12)
can then be used to construct the evolution operatorU(t, t0) and accordingly the state vector

|ψ(t)〉 = |ψ(t0)〉 +
∫ t

t0

dt2

∫ t2

t0

dt1S̃(t2, t1)|ψ(t0)〉 (42)

at any timet . Thus (37) can be regarded as an equation of motion for states of a quantum
system.

From the mathematical point of view the requirement thatHint (t2, t1) contains all
the dynamic information that is needed for constructingU(t2, t1) means that the operator
Hint (t2, t1)must have such a form that equation (37) has a unique solution having the following
behaviour near the pointt2 = t1:

S̃(t2, t1) →
t2→t1

Hint (t2, t1) + o(τ ε) (43)

whereτ = t2 − t1 and the value ofε depends on the form of the operatorHint (t2, t1). In
order to clarify this point, note that equation (38) is equivalent to the following equation for
the operatorT (z) given by (18):

dT (z)

dz
= T (z)G(2)(z)T (z) (44)

where

G(2)(z) = −
∑
n

|n〉〈n|
(z− En)2 .

The correspondence between equation (38) and the differential equation (44) can be easily
stated in the same way in which we stated the correspondence between equations (35) and (36).
Thus, instead of solving (37) or (38), one can solve equation (44) for the operatorT (z). The
operatorT̃ (τ ) and correspondingly the operatorS̃(t2, t1) can then be obtained by using (23).
At the same time, according to (26), the operatorT (z) can be used directly for constructing
the evolution operator. According to (18), (39) and (41), the operatorT (z) has the following
asymptotic behaviour for|z|→∞ :

T (z) →
|z|→∞

B(z) + o(|z|−β) (45)

where

B(z) = i
∫ ∞

0
dτ exp(izτ)H (s)

int (τ ) (46)

andβ = 1 +ε. From (44) and (45) it follows that the operatorB(z)must satisfy the following
asymptotic condition:

dB(z)

dz
→
|z|→∞

B(z)G(2)(z)B(z) + o(|z|−β). (47)
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The above requirements, which the operatorH
(s)
int (τ ) has to meet, mean thatB(z) must be so

close to the solution of equation (44) in the limit|z|→∞ that this differential equation has
a unique solution having the asymptotic behaviour (45). The operatorB(z) represents the
contribution whichH(s)

int (τ ) gives to the operatorT (z), and we call it the effective interaction
operator.

Let us now show that the Schrödinger equation results from equation (37) and hence the
dynamics of a quantum system is equivalent to the Hamiltonian dynamics in the case when
the generalized interaction operator is of the form

H
(s)
int (τ ) = −2iδ(τ )HI (48)

HI being a self-adjoint operator. The delta functionδ(τ ) in (48) emphasizes the fact that in
this case, the fundamental interaction is instantaneous. As it is shown in appendix C, from
(37) it follows thatS̃(t2, t1)must also satisfy equation (36) for anya. Lettinga→ i∞ in (36)
and taking into account (48), we get the following equation:

〈n2|S̃(t2, t1)|n1〉 = −2iδ(t2 − t1)〈n2|HI(t1)|n1〉 − i
∑
n

∫ t2

t1

dt3 〈n2|HI(t2)|n〉〈n|S̃(t3, t1)|n1〉

(49)

whereHI(t) = exp(iH0t)HI exp(−iH0t). Solving this equation by expanding̃S(t2, t1) in
terms ofHI(t), one can easily obtain

S̃(t, t0) = −2iδ(t − t0)HI (t0)
+
∞∑
n=2

(−i)n
∫ t

t0

dt1

∫ t1

t0

dt2 . . .
∫ tn−3

t0

dtn−2HI(t)HI (t1) . . . HI (tn−2)HI (t0).

(50)

Thus, we have shown that for the case under study, equation (37) allows one to obtainS̃(t2, t1)

for any t1 and t2 starting from the contribution to the evolution operator coming from the
process associated with the instantaneous interaction.

Inserting (50) into (12) yields

U(t, t0) = 1 +
∞∑
n=1

(−i)n
∫ t

t0

dt1 . . .
∫ tn−1

t0

dtnHI (t1)HI (t2) . . . HI (tn). (51)

This expression coincides, in form, with the Dyson expansion of the evolution operator. From
this it follows that the operatorHI(t) has to be identified with the interaction Hamiltonian.
As is well known, the series (51) is convergent, provided the operatorHI(t) is bounded. This
means that the series (50) is also convergent in this case. On the other hand, substituting (49)
into (12), we easily obtain the following equation for the evolution operatorU(t2, t1):

U(t2, t1) = 1− i
∫ t2

t1

dt HI (t)U(t, t1). (52)

This equation is the integral form of the Schrödinger equation for the evolution operator

dU(t, t0)

dt
= −iHI(t)U(t, t0) U(t0, t0) = 1. (53)

Hence, in the case whenH(s)
int (τ ) is of the form (48), from (37) it follows that|ψ(t)〉 given by

(42) satisfies the Schrödinger equation

d|ψ(t)〉
dt

= −iHI(t)|ψ(t)〉.
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Thus we have shown the equivalence of the dynamics governed by equation (37) to the
Hamiltonian dynamics in the case when the generalized interaction operatorH

(s)
int (τ ) is of

the form (48). At the same time, as we show below, equation (37) permits the generalization
to the case when the operatorH(s)

int (τ ) has no such a singularity as the delta function at the
point t2 = t1. In this case the fundamental interaction generating the dynamics in a quantum
system is nonlocal-in-time: the evolution operator is defined byH

(s)
int (τ ) as a function of the

time durationτ of the interaction.
It should be noted that the concept of nonlocal-in-time potentials was first introduced

within the optical-potential model. This concept, for example, is used in the theory of time-
dependent optical potentials (see, for example, [23, 24] and references therein). The optical
potentials are introduced in the case when only state vectors belonging some subspace of the
Hilbert space are included explicitly in the description of the time evolution of a quantum
system. Such potentials which account for the coupling between this subspace and its
complementary part of the Hilbert space are nonlocal in time and, thus, depends on the history
of a dynamical system. The nonlocal form of the optical potentials is an expression of the loss
of probability from the above subspace. However, the optical-potential model is one of the
methods used for the description of the time evolution of quantum systems, the dynamics
of which is generated by the local-in-time interaction being described by the interaction
Hamiltonian. In the present formalism such a dynamics corresponds to the particular case when
the generalized interaction operator is of the form (48). At the same time our formalism permits
the generalization to the case when the fundamental interaction generating the dynamics in a
quantum system is itself nonlocal in time and hence the nonlocality of the interaction does not
lead to the loss of probability in the system.

6. Exactly solvable model

Let us consider the evolution problem for two nonrelativistic particles in the c.m.s. We denote
the relative momentum bypand the reduced mass byµ. Assume that the generalized interaction
operator in the Schrödinger pictureH(s)

int (τ ) has the form

〈p2|H(s)
int (τ )|p1〉 = ϕ(p2)ϕ

∗(p1)f (τ ) (54)

wheref (τ) is some function ofτ , and the form factorϕ(p) has the following asymptotic
behaviour for|p| → ∞:

ϕ(p) ∼ c1

|p|α (|p| → ∞). (55)

In this case, the problem can be easily solved by using equation (44). Representing
〈p2|T (z)|p1〉 in the form

〈p2|T (z)|p1〉 = ϕ(p2)ϕ
∗(p1)t (z) (56)

from (44) and (45), we get the equation

dt (z)

dz
= −t2(z)

∫
d3k
|ϕ(k)|2
(z− Ek)2 (57)

with the asymptotic condition

t (z) →
|z|→−∞

f1(z) + o(|z|−β) (58)

where

f1(z) = i
∫ ∞

0
dτ exp(izτ)f (τ) (59)
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andEk = k2

2µ . The solution of equation (57) with the initial conditiont (a) = ga, where
a ∈ (−∞, 0), is

t (z) = ga
(

1 + (z− a)ga
∫

d3k
|ϕ(k)|2

(z− Ek)(a − Ek)
)−1

. (60)

In the caseα > 1
2, the functiont (z) tends to a constant asz→−∞
t (z) →

z→−∞ λ (61)

where

λ = ga
(

1 +ga

∫
d3k
|ϕ(k)|2
a − Ek

)−1

. (62)

Thus, in this case the functionf1(z)must tend toλ asz→−∞. From this and (59) it follows
that the only possible form of the functionf (τ) is

f (τ) = −2iλδ(τ) + f ′(τ ) (63)

where the functionf ′(τ ) has no such a singularity at the pointτ = 0 as the delta function. In
this case the generalized interaction operatorH

(s)
int (τ ) has the form (48) and hence the dynamics

generated by this operator is equivalent to the dynamics governed by the Schrödinger equation
with the separable potential

〈p2|HI |p1〉 = λϕ(p2)ϕ
∗(p1). (64)

In particular, in this case from (60) and (61) we easily obtain the well known expression for
theT matrix in the separable-potential model

〈p2|T (z)|p1〉 = λϕ(p2)ϕ
∗(p1)

(
1− λ

∫
d3k
|ϕ(k)|2
z− Ek

)−1

. (65)

Ordinary quantum mechanics does not permit the extension of the above model to the
caseα 6 1

2. Indeed, in the case of such a large-momentum behaviour of the form factors
ϕ(p), substituting the interaction Hamiltonian given by (64) into (51) leads to the ultraviolet
divergences, and the integral in (65) is not convergent. We now show that our formalism allows
one to extend this model to the case 0< α < 1

2. Let us determine the class of the functions
f1(z) and correspondingly the value ofβ for which equation (57) has a unique solution having
the asymptotic behaviour (58). In the caseα < 1

2, the functiont (z) given by (60) has the
following behaviour forz→−∞:

t (z) →
z→−∞ b1|z|α−1/2 + b2|z|2α−1 + o(|z|2α−1) (66)

whereb1 = − 1
2 cos(απ)π−2c−2

1 (2µ)α−3/2 andb2 = b1|a|1/2−α − b2
1g
−1
a . Here and below we

restrict ourselves to the case whenϕ(p) = c1|p|−α. The parameterb1 does not depend on
ga. This means that all solutions of equation (57) have the same leading term in (66), and
only the second term distinguishes the different solutions of this equation. Thus, in order to
obtain a unique solution of equation (57) we must specify the first two terms in the asymptotic
behaviour oft (z) for z → −∞. From this it follows that the functionsf1(z) must be of the
form

f1(z) = b1|z|α−1/2 + b2|z|2α−1 (67)

andβ = 2α − 1. Correspondingly the functionsf (τ) must be of the form

f (τ) = a1τ
−α−1/2 + a2τ

−2α (68)
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with a1 = −ib10
−1(1−2α) exp[i(−α/2+1

4)π ], anda2 = −b20
−1(1−2α) exp(−iαπ), where

0(z) is the gamma-function. This means that in the caseα < 1
2, the generalized interaction

operator must be of the form

〈p2|H(s)
int (τ )|p1〉 = a1ϕ(p2)ϕ

∗(p1)τ
−α−1/2 + a2ϕ(p2)ϕ

∗(p1)τ
−2α. (69)

Using (56) and (60), for〈p2|T (z)|p1〉, we get

〈p2|T (z)|p1〉 = N(z)ϕ(p2)ϕ
∗(p1) (70)

with

N(z) = ga
(

1 + (z− a)ga
∫

d3k
|ϕ(k)|2

(z− Ek)(a − Ek)
)−1

(71)

where

ga = b2
1

b1|a|1/2−α + a20(1− 2α) exp(−iαπ)
.

It can be easily checked thatN(z) given by (71) does not depend on the choice of the parameter
a, and we can leta→−∞. Taking into account that

ga →
a→−∞ b1|a|α− 1

2 + b2|a|2α−1 + o(|a|2α−1)

and lettinga→−∞ in (71), we get

N(z) = b2
1

b1(−z)1/2−α − b2
. (72)

In order that the operatorT (z) given by (70) and (72) satisfy equations (33) and (34) the
parameterb2 must be real. The same formula forT (z) can be obtained by using equation (37).
It can be shown that ifHint (t2, t1) is of the form (69), then equation (37) has a unique solution
having the behaviour (43) withε = −2α. In the case whenϕ(p) = c1|p|−α, this solution
written for T̃ (τ ) is

〈p2|T̃ (τ )|p1〉 =
∞∑
n=1

anτ
n(1/2−α)−1ϕ(p2)ϕ

∗(p1)

where

an = an−1
2 a2−n

1 0n−1(1− 2α)02−n( 1
2 − α)0−1(n/2− nα).

Substituting this series into (18) we get〈p2|T (z)|p1〉 which can be represented in the form
(70). By using (10), (26) and (70), we can construct the evolution operator

〈p2|U(t, t0)|p1〉 = 〈p2|p1〉 − i

2π

∫ ∞
−∞

dx

×exp[−i(z− Ep2)t ] exp[i(z− Ep1)t0]

(z− Ep2)(z− Ep1)
N(z)ϕ(p2)ϕ

∗(p1) (73)

wherez = x + iy, andy > 0. Since〈p2|T (z)|p1〉 given by (70) satisfies equations (33)–(35),
the evolution operatorU(t, t0) defined by (12) is a unitary operator satisfying the composition
law (4).

We have stated the correspondence between the form of the generalized interaction
operator and the large-momentum behaviour of the form factorϕ(p). In the caseα > 1

2,

the operatorH(s)
int (τ ) would necessarily have the form (48). In this case the fundamental

interaction is instantaneous. In the case 0< α < 1
2 (the restrictionα > 0 is necessary for

the integral in (60) to be convergent), the only possible form ofH
(s)
int (τ ) is (69), and hence the
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interaction generating the dynamics of the system is nonlocal in time. In appendix D it is shown
that in this case there are normalized vectors in the Hilbert space for which〈ψ2|U(t, 0)|ψ1〉 are
not continuous att = 0. These vectors represent the states with infinite energy which are not
physically realizable and hence the condition (7) is not violated. Nevertheless, the evolution
operatorV (t) = Us(t, 0) is not continuous and hence the group of these operators has no
infinitesimal generator in this case. From this it follows that in this case the time evolution of
a state vector is not governed by the Schrödinger equation. The cause of this discontinuity is
quite obvious. Indeed, from the point of view of the states with infinite energy any time interval
δt is infinite and hence the corresponding matrix elements of the evolution operatorU(δt, 0)
must be independent ofδt , i.e. must be constant. As is shown in appendix D, in the case
α > 1

2 such matrix elements ofR(t, 0) being independent oft are zero, and the discontinuity
problem does not appear. This problem appears in the caseα < 1

2, i.e. in the case when the
matrix elements〈k2|U(t2, t1)|k1〉 as functions ofk1 andk2 do not meet the requirements of
ordinary quantum mechanics. Thus, the cause of the above-mentioned lack of continuity of
the evolution operator is the ‘bad’ large-momentum behaviour of the form factorsϕ(p).

Let us now show that the evolution operator defined by (71) and (73) satisfies condition (7).
Using (71) and (73), for the matrix element of the evolution operator in the Schrödinger picture
V (t), we can write

〈ψ2|V (t)|ψ1〉 = 〈ψ2|ψ1〉 − i

2π

∫ ∞
−∞

dx exp(−izt)
b2

1J (z)

b1(−z)1/2−α − b2
(74)

with

J (z) =
∫

d3k1

∫
d3k2

|c1|2ψ1(k1)ψ
∗
2 (k2)

|k1|α|k2|α(z− Ek1)(z− Ek2)
(75)

wherez = x + iy, y > 0, andψi(k) = 〈k|ψi〉, i = 1, 2. By using the fact that the functions
ψ1(k) andψ2(k)must be square-integrable, it can be shown that, if the vectors|ψ1〉 and|ψ2〉
do not represent the above states with infinite energy, then the functionJ (z) given by (75) is
estimated as

J (z) 6 C(1 + |z|)−1/2−α−ε

whereε > 0. From this and the properties of Fourier integrals it follows that for the physically
realizable states the matrix elements〈ψ2|V (t)|ψ1〉 given by (74) are continuous functions of
time for−∞ < t < ∞ and hence the evolution operator devined by (71) and (73) satisfies
condition (7).

7. Summary and discussions

We have constructed a formalism based on the above assumptions of the Feynman formulation
and canonical quantum theory. By using assumption (iii) in the spirit of the Feynman
formalism, within the formalism the probability amplitude〈ψ2|U(t, t0)|ψ1〉 is represented
as a sum of contributions from the evolution processes associated with completely specified
instants of the beginning and end of the interaction in a quantum system, and〈ψ2|S̃(t2, t1)|ψ1〉
represents the contribution from the process in the case where the interaction begins at timet1
and ends at timet2. We have shown that this representation and the requirement of unitarity for
the evolution operator lead to equation (37) for the operatorS̃(t2, t1)and equations (33)–(35) for
the operatorT (z)defined by (18). Equation (37) allows one to obtain the operatorS̃(t2, t1) if the
generalized interaction operatorHint (t2, t1) which determines the behaviour ofS̃(t2, t1) in the
limit t2→ t1 is specified. It has been shown that the evolution operator constructed in this way
is a unitary operator with the group property (4). In the case whenH

(s)
int (τ ) is of the form (48), the
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Schr̈odinger equation has been shown to result from equation (37) which can be regarded as an
equation of motion. In this case the fundamental interaction in the system is instantaneous and
the dynamics governed by this equation of motion is equivalent to the Hamiltonian dynamics.
At the same time, our formalism permits the generalization to the case when the fundamental
interaction in a quantum system being described by the operatorH

(s)
int (τ ) is nonlocal in time.

In this case the dynamics is not equivalent to the dynamics governed by the Schrödinger
equation. This is not at variance with Stone’s theorem, since, as it has been shown on the
exactly solvable model, the evolution operator is not strongly continuous in this case. It only
satisfies the more general continuity condition (7). We have stated correspondence between
the large-momentum behaviour of the matrix elements of the evolution operator and the form
of the generalized interaction operatorH(s)

int (τ ): if this behaviour satisfies the requirements of
conventional quantum theory, thenH(s)

int (τ ) must necessarily be of the form (48), and if this
large-momentum behaviour does not meet the above requirements, thenH

(s)
int (τ ) must be of

the form corresponding to the case when the interaction generating the dynamics of a quantum
system is nonlocal in time.

The above gives reason to hope that the proposed formalism may open new possibilities for
solving the problem of the ultraviolet divergences in quantum field theory. In this connection
note the following. Since locality is the main cause of the ultraviolet divergences, it seems
natural to resolve the problem by the introduction of a nonlocal form factor into the interaction
Hamiltonian density. For example, in QED a nonlocal form factor could be introduced by
specifying the interaction Hamiltonian density in the form

HI (x) =
∫

d4x1

∫
d4x2F(x − x1, x − x2)jµ(x1)A

µ(x2)

whereF(x − x1, x − x2) is a covariant form factor,jµ(x) is the current density operator, and
Aµ(x) is the electromagnetic field potential. However, it turned out that the nonlocal form
factor cannot be introduced in such a way without losing covariance of the theory. Indeed, for
the theory to be relativistically invariant,H1(x) must satisfy the condition

H1(x1)H1(x2) = HI (x2)HI (x1) (x2 − x1)
2〈0.

But, as is well known, the introduction of the nonlocal form factor leads to a violation of this
condition. The reason for these difficulties is quite obvious. Due to the delta functionδ(τ )

the generalized interaction operator given by (48) describes an instantaneous interaction. In
nonrelativistic quantum mechanics processes of instantaneous interaction may be nonlocal in
space. However, in relativistic quantum theory a local-in-time process must be also local in
space. Thus, in the case when the generalized interaction operatorH

(s)
int (τ ) has the form (48),

the theory is local in nature, and the introduction of a nonlocal form factor leads to the intrinsic
inconsistency of the theory. On the other hand, our formalism permits a generalization to the
class of the operatorsH(s)

int (τ ) that are not of the form (48). In this case the duration time
τ = t2 − t1 of the fundamental interaction is not zero, and the description of the dynamics of
the system becomes fundamentally nonlocal. For example, in QED the operatorHint (t2, t1)

may be specified in the form

Hint (t2, t1) =
∫

d3x1

∫
d3x2Hint (x2, t2, x1, t1)

with

Hint (x2, x1) =
∫

d4y1

∫
d4y2F(x2 − x1, x2 − y1, x2 − y2)jµ(y1)A

µ(y2).

HereF(x2 − x1, x2 − y1, x2 − y2) is a relativistically invariant form factor. The matrix
elements〈ψ2|Hint (x2, x1)|ψ1〉may be interpreted as amplitudes describing processes in which
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interaction begins at a pointx1 of space-time and ends at a pointx2, and the presence of the
nonlocal form factor in the expression ofHint (x2, x1) seems to be natural. One may hope that
the form factorF(x2 − x1, x2 − y1, x2 − y2) can be chosen in such a way that no divergence
difficulties arise in describing the time evolution of systems in QED, and, at the same time,
solution of equation (37) lead to the ordinary renormalized expression for theS matrix.

Let us now show that the proposed formalism may open new possibilities for describing the
low-energy nucleon dynamics. For this purpose, return to the model considered in section 6. In
the connection with the fact that this model is an extension of the ordinary separable-potential
model to the case when the separable interaction is nonlocal in both space and time, note that
separable potentials are widely used in nuclear physics (see, for example, [25–30]). One may
hope that within this extended model a better agreement with experiment can be achieved.

In the case when the operatorHint (t2, t1) has such a form that the interaction generating
the dynamics of a system is nonlocal in time, the effective interaction operatorB(z) is energy
dependent. As mentioned above, the energy dependence of the effective operators of the
hadron–hadron interactions is associated with the quark and gluon degrees of freedom which
are not included explicitly in the description of low-energy hadron interaction. It should be
noted that, in general, the energy-dependent operator of hadron–hadron interaction cannot also
be assumed to be an optical potential, since due to the quark confinement a hadron system
can be considered as a closed system, and for conservation of probability one need not to
include explicitly in the description the channels associated with the quark and gluon degrees
of freedom. A remarkable feature of the proposed formalism is that the operator of interaction
may be energy dependent even in the case of closed systems when the time evolution is
unitary. At the same time, the quark and gluon degrees of freedom may manifest themselves
in the dependence upon the time durationτ = t2 − t1 of the interaction. In this case the
generalized interaction operator may be interpreted as an operator whose matrix elements
〈ψ2|Hint (t2, t1)|ψ1〉 describe transitions between hadron states, andt1 and t2 are the times
between which the quark and gluon degrees of freedom come into play. One may hope that it
will become possible to construct such operators by using QCD-inspired quark models.

Taking into account the quark and gluon degrees of freedom is especially important for
describing the short-range NN interaction. In this connection note that in the most realistic
NN potentials theoretical parts are supplemented with phenomenological short-range parts.
Our formalism makes it possible to describe these phenomenological parts in terms of the
operatorHint (t2, t1). This may open new possibilities for reducing the discrepancy that still
exists between theory and experiment.

Appendix A

Represent (24) in the form

〈n2|R(t, t0)|n1〉 = lim
a→∞〈n2|Ra(t, t0)|n1〉

where

〈n2|Ra(t, t0)|n1〉 = − a

2π

∫ t

t0

dt2

∫ t2

t0

dt1

∫ ∞
−∞

dx
〈n2|T (z)|n1〉

z + a
× exp(iEn2t2) exp[−iz(t2 − t1)] exp(−iEn1t1)

anda is real. Integrating overt1 andt2 (here the integrations overt1, t2 andx1 may be reversed
in order), we get

〈n2|Ra(t, t0)|n1〉 = a

2π

∫ ∞
−∞

dx
〈n2|T (z)|n1〉

(z− En2)(z− En1)(z + a)
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× exp[−i(z− En2)t ] exp[i(z− En1)t0] + 〈n2|B(t, t0)|n1〉
where

〈n2|B(t, t0)|n1〉 =
∫ ∞
−∞

dx 〈n2|F(z, t, t0)|n1〉

with

〈n2|F(z, t, t0)|n1〉 = − a

2π

〈n2|T (z)|n1〉
(z + a)

×
[

exp[i(En2 − En1)t0]

(z− En2)(z− En1)
− exp[i(En2 − En1)t ] − exp[i(En2 − En1)t0]

(z− En2)(En2 − En1)

]
.

Taking into account the above analytic properties of〈n2|T (z)|n1〉 and the asymptotic condition
(25), we get ∫ ∞

−∞
dx 〈n2|F(z, t, t0)|n1〉 =

∮
c1

dz 〈n2|F(z, t, t0)|n1〉 = 0

wherez = x + iy, y > 0, and the contour of integrationc1 consists of the axisy = constant
and the upper half of the infinite circle. Thus, for〈n2|R(t, t0)|n1〉 we have

〈n2|R(t, t0)|n1〉 = lim
a→∞

(
a

2π

∫ ∞
−∞

dx 〈n2|T (z)|n1〉exp[−i(z− En2)t ] exp[i(z− En1)t0]

(z− En2)(z− En1)(z + a)

)
= 1

2π

∫ ∞
−∞

dx
exp[−i(z− En2)t ] exp[i(z− En1)t0]

(z− En2)(z− En1)
〈n2|T (z)|n1〉.

Appendix B

Let us show that the evolution operators given by (10) and (26) satisfies the composition law
(4), provided equation (35) is valid. The right-hand side of (4) can be rewritten as follows:

Ur(t, t
′, t0) ≡ U(t, t ′)U(t ′, t0) = 1 + iR(t, t ′) + iR(t ′, t0)− R(t, t ′)R(t ′, t0).

Let t > t ′ > t0. By using (26), for〈n2|Ur(t, t ′, t0)|n1〉, we get

〈n2|Ur(t, t ′, t0)|n1〉 = 〈n2|n1〉 + i〈n2|R(t, t ′)|n1〉 + i〈n2|R(t ′, t0)|n1〉 + 〈n2|D(t, t ′, t0)|n1〉
where

〈n2|D(t, t ′, t0)|n1〉 = − 1

(2π)2
∑
n

∫
dx1

∫
dx2 exp[−i(z2 − En2)t ]

× exp[i(z1− En1)t0] exp[i(z2 − z1)t
′]

× 〈n2|T (z2)|n〉〈n|T (z1)|n1〉
(z2 − En2)(z2 − En)(z1− En)(z1− En1)

with z1 = x1 + iy1, z2 = x2 + iy, y2〉y1. Assuming thatT (z) satisfies equation (35), this
equation can be written in the form

〈n2|D(t, t ′, t0)|n1〉 = − 1

(2π)2

∫
dx1

∫
dx2

×exp[−i(z2 − En2)t ] exp[i(z1− En1)t0] exp[i(z2 − z1)t
′]

(z2 − En2)(z1− En1)

×
[ 〈n2|T (z1)|n1〉

z2 − z1
− 〈n2|T (z2)|n1〉

z2 − z1

]
= i

2π

∫
dx1

×{ exp[−i(z1− En2)t ] exp[i(z1− En1)t0] − exp[−i(z1− En2)t ]
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× exp[i(z1− En1)t
′]
}{
(z1− En2)(z1− En1)

}−1

×〈n2|T (z1)|n1〉 − i

2π

∫
dx2

exp[−i(z2 − En2)t
′] exp[i(z2 − En1)t0]

(z2 − En2)(z2 − En1)

×〈n2|T (z2)|n1〉 == i(〈n2|R(t, t0)|n1〉 − 〈n2|R(t, t ′)|n1〉 − 〈n2|R(t ′, t0)|n1〉).
From this equation it follows that equation (4) is satisfied fort > t ′ > t0. By using (13), it is
easy to show then that the evolution operator satisfies the composition law (4) for anyt, t ′ and
t0.

Appendix C

Let us now directly derive an equation for the operatorS̃(t2, t1) starting from equation (35).
From this equation, using the definition of〈n2|T (z)|n1〉 given by (27), one can find∫ ∞

0
dτ exp(iz1τ)τ (1− exp[i(z2 − z1)τ ])〈n2|T̃ (τ )|n1〉

=
∑
n

∫ ∞
0

dτ exp(iz1τ)

∫ τ

0
dτ2

∫ τ−τ2

0
dτ1(τ − τ1− τ2)

× exp[−iEn(τ − τ1− τ2)]〈n2|T̃ (τ2)|n〉〈n|T̃ (τ1)|n1〉.
For this relation to be valid for anyz1 andz2 the matrix elements〈n2|T̃ (τ )|n1〉 must satisfy
the following equation:

(1− exp[i(z2 − z1)τ ])τ 〈n2|T̃ (τ )|n1〉
=
∑
n

∫ τ

0
dτ2

∫ τ−τ2

0
dτ1(τ − τ1− τ2) exp[−iEn(τ − τ1− τ2)]

×〈n2|T̃ (τ2)|n〉〈n|T̃ (τ1)|n1〉.
From this equation, by using (15), one can get equation (36) for the operatorS̃(t2, t1).
Equation (36) has be rewritten in the form[ ∞∑
n=1

(ia)n

n!
(t2 − t1)n)

]
S̃(t2, t1) =

∫ t2

t1

dt4

∫ t4

t1

dt3

×
[ ∞∑
m=0

(ia)m

m!
(t2 − t4)m

][ ∞∑
k=1

(ia)k

k!
(t4 − t3)k

]
S̃(t2, t4)S̃(t3, t1).

For this relation to be valid for everya, each term of the expansion in powers ofa on the
left-hand side of this equation must be equal to the term of the same order on its right-hand
side. In the first order, for example, we have

a(t2 − t1)S̃(t2, t1) =
∫ t2

t1

dt4

∫ t4

t1

dt3(t4 − t3)S̃(t2, t4)S̃(t3, t1).

From this it follows thatS̃(t2, t1) must satisfy equation (37).

Appendix D

Let us show that in the caseα < 1
2 there are states in the Hilbert space for which〈ψ2|U(t, 0)|ψ1〉

are not continuous. Using (10), (12) and (15), for〈ψ2|R(t, 0)|ψ1〉, we can write

〈ψ2|R(t, 0)|ψ1〉 = i
∫ t

0
dt2

∫ t2

0
dt1

∫
d3k1

∫
d3k2 exp[i(Ek2 − Ek1)t2]

× exp[iEk1(t2 − t1)]ψ∗2 (k2)ψ1(k1)〈k2|T̃ (t2 − t1)|k1〉
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whereψi(k) = 〈k|ψi〉, i = 1, 2. Consider the vectors|ψν〉 for which

〈k|ψν〉 = νd

k(k − ν − iν00)

whered = 01/2
0 (2π)−1/2[π/2 + arctg( 1

00
)−1], k = |k|, and00 is a real constant. It is easy to

verify that these vectors are normolized.
Let us now consider the caseα > 1

2. Taking into account (56) and (63), for〈ψν |R(t, 0)|ψν〉
in the limit ν →∞, we have

〈ψν |R(t, 0)|ψν〉 = ν1−2αgd2|c1|2
∫ θ

0
dθ1

∫
d3q1

∫
d3q2

× exp[i(Eq2 − Eq1)θ1]

(q1− 1 + i00)(q2 − 1− i00)q
α
1 q

α
2

+ o(ν1−2α)

whereqi = kiν
−1, θ = tν2, θ1 = t1ν

2. It is easy to see that〈ψν |R(t, 0)|ψν〉 given by this
equation tends to zero asν → ∞. Let us now consider the caseα < 1

2. According to (69),
〈k2|T̃ (τ )|k1〉 has the following behaviour near the pointτ = 0:

〈k2|T̃ (τ )|k1〉 = a1ϕ(k2)ϕ
∗(k1)τ

−β + o(τ−β)

with β = α − 1
2. Taking into account this fact, for〈ψν |R(t, 0)|ψν〉 in the limit ν → ∞, we

get

〈ψk0|R(t, 0)|ψk0〉 = να−1/2−β
∫ θ

0
dθ2

∫ θ2

0
dθ1F2(θ1, θ2) + o(να+

1
2−β)

where

F2(θ1, θ2) = a1d
2|c1|2

∫
d3q1

∫
d3q2

exp[i(Eq2 − Eq1)θ2] exp[iEq1(θ2 − θ1)]

(q1− 1 + i00)(q2 − 1− i00)q
1+α
1 q1+α

2 (θ2 − θ1)β

qi = kiν−1, θ = tiν2, andθ = tν2. Sinceβ = α − 1
2, it follows from this that

lim
ν→∞〈ψν |R(t, 0)|ψν〉 = C

whereC = ∫∞
0 dθ2

∫∞
0 dθ1F2(θ1, θ2). Thus, in the limitν → ∞ the matrix element

〈ψν |R(t, 0)|ψν〉 is independent oft . This means that there are normalized vectors in the
Hilbert space for which〈ψ2|U(t, 0)|ψ1〉 does not tend to〈ψ2|ψ1〉 ast → 0. However, these
vectors represent the states with infinite momentum and correspondingly with infinite energy
which are not physically realizable and hence condition (7) is not violated.
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[24] Lüdde H J, Henne A, Kirchner T and Dreizler R MJ. Phys. B: At. Mol. Opt. Phys.294423
[25] Yamaguchi Y 1954Phys. Rev.951635
[26] Tabakin F 1968Phys. Rev.1741208
[27] Haidenbauer J and Plessas W 1984Phys. Rev.C 301822
[28] Rupp G and Tjon J A 1988Phys. Rev.C 371729
[29] Alm T and R̈opke G 1994Phys. Rev.C 5031
[30] Adhikari S K and Tomio L 1995Phys. Rev.C 5170


